Rangkaian Listrik Kompleks
Rangkaian Listrik Kompleks
Contoh soal :
Carilah Nilai I ?
Jawab:
Bila kita melihat resistor R1, R2, dan R3 sebagai suatu rangkaian Δ (pada rumus berturut-turut Rab, Rac, dan Rbc) dan ingin menggantinya dengan rangkaian Y, kita bisa mengubah rangkaian jembatan ini menjadi rangkaian yang lebih sederhana yaitu rangkaian seri-paralel:

Sekarang kita telah mendapatkan rangkaian yang lebih sederhana. Kita bisa menganalisa rangkaian ini menggunakan aturan seri-paralel:

Serikan rangkaian RB dan R4 serta rangkaian Rc dan R5
RS1 = RB + R4
= 2Ω + 3Ω = 5 Ω
RS2 = RC + R5
= 3Ω + 12Ω = 15 Ω
sehingga terbentuk rangkaian seperti ini:

Selanjutnya, hambatan RS1 dan RS2 di paralelkan
RS1// RS2 = RP =
Rp = = = 3 Ω
Dan terbentuk rangkaian seri seperti ini :

an rangkaian diatas dihitung secara seri menjadi RT
RT = RA + RP
= 6 + 3 = 9 Ω
Lalu, hitung I dengan menggunakan hukum Ohm

Hukum Ohm
Bunyi Hukum Ohm
Kuat arus yang mengalir pada suatu kawat penghantar akan berbanding lurus dengan beda potensial pada ujung-ujung kawat penghantar tersebut asalkan suhu kawat dijaga konstan.Hukum Ohm dirumuskan :
V = I R
I = V/R
R = V/I
Keterangan :
V = Beda potensial atau tegangan (volt)
I = Kuat arus listrik (ampere atau A)
R = Hambatan listrik (ohm atau Ω)
1Kohm = 1 kilo ohm = 1000 ohm
Contoh soal :
Pada suatu rangkaian listrik sederhanan terdapat penyuplai daya dengan tegangan 10 volt dan beban dengan hambatan 10 ohm. Berapakah besarnya kuat arus pada rangkaian tersebut?Pembahasan:
Dengan menggunakan hukum Ohm, kita dapat langsung mencari nilai kuat arus pada rangkaian sederhana dengan memakai rumus:
Hukum Kirchoff 1
Hukum Kirchoff 2

Elemen Aktif
Elemen aktif adalah elemen yang menghasilkan energi, pada mata kuliah Rangkaian Listrik yang akan dibahas pada elemen aktif adalah sumber tegangan dan sumber arus. Pada pembahasan selanjutnya kita akan membicarakan semua yang berkaitan dengan elemen atau komponen ideal. Yang dimaksud dengan kondisi ideal disini adalah bahwa sesuatunya berdasarkan dari sifat karakteristik dari elemen atau komponen tersebut dan tidak terpengaruh oleh lingkungan luar. Jadi untuk elemen listrik seperti sumber tegangan, sumber arus, kompone R, L, dan C pada mata kuliah ini diasumsikan semuanya dalam kondisi ideal.
1. Sumber Tegangan (Voltage Source)
Sumber tegangan ideal adalah suatu sumber yang menghasilkan tegangan yang tetap, tidak tergantung pada arus yang mengalir pada sumber tersebut, meskipun tegangan tersebut merupakan fungsi dari t.
Sifat lain :
Mempunyai nilai resistansi dalam Rd = 0 (sumber tegangan ideal)
a. Sumber Tegangan Bebas/ Independent Voltage Source
Sumber yang menghasilkan tegangan tetap tetapi mempunyai sifat khusus yaitu harga tegangannya tidak bergantung pada harga tegangan atau arus lainnya, artinya nilai tersebut berasal dari sumbet tegangan dia sendiri.
Simbol :

b. Sumber Tegangan Tidak Bebas/ Dependent Voltage Source
Mempunyai sifat khusus yaitu harga tegangan bergantung pada harga tegangan atau arus lainnya.
Simbol :

2. Sumber Arus (Current Source)
Sumber arus ideal adalah sumber yang menghasilkan arus yang tetap, tidak bergantung pada tegangan dari sumber arus tersebut.
Sifat lain :
Mempunyai nilai resistansi dalam Rd = ∞ (sumber arus ideal)
a. Sumber Arus Bebas/ Independent Current Source
Mempunyai sifat khusus yaitu harga arus tidak bergantung pada harga tegangan atau arus lainnya.
Simbol :

b. Sumber Arus Tidak Bebas/ Dependent Current Source
Mempunyai sifat khusus yaitu harga arus bergantung pada harga tegangan atau arus lainnya.
Simbol :

Contoh komponen aktif adalah :
a. Transistor: merupakan komponen elektronika dengan 3 elektrode yang berfungsi sebagai penguat atau saklar. Jika sebagai penguat maka transistor dapat menguatkan sinyal listrik. Dalam hal ini inputnya dimasukkan ke titik B dan outputnya diambil dari titik A.
b. Diode: adalah komponen elektronika dengan dua elektrode, yang dapat dipakai untuk menyearahkan sinyal listrik, sehingga termasuk komponen aktif.
c. LED (light emitting diode): Jika dihubungkan dengan sumber tegangan listrik maka LED tersebut akan menyala. Jadi, LED termasuk komponen aktif karena dapat mengubah suatu bentuk energi (listrik) menjadi bentuk lainnya (cahaya).
b. Diode: adalah komponen elektronika dengan dua elektrode, yang dapat dipakai untuk menyearahkan sinyal listrik, sehingga termasuk komponen aktif.
c. LED (light emitting diode): Jika dihubungkan dengan sumber tegangan listrik maka LED tersebut akan menyala. Jadi, LED termasuk komponen aktif karena dapat mengubah suatu bentuk energi (listrik) menjadi bentuk lainnya (cahaya).
Elemen Pasif
1. Resistor (R)
Sering juga disebut dengan tahanan, hambatan, penghantar, atau resistansi dimana resistor mempunyai fungsi sebagai penghambat arus, pembagi arus , dan pembagi tegangan.
Nilai resistor tergantung dari hambatan jenis bahan resistor itu sendiri
(tergantung dari bahan pembuatnya), panjang dari resistor itu sendiri dan luas penampang dari resistor itu sendiri.
Secara matematis :
R = ρ l A
dimana : ρ = hambatan jenis
l = panjang dari resistor
A = luas penampang
Satuan dari resistor : Ohm ( Ω)
Jika suatu resistor dilewati oleh sebuah arus maka pada kedua ujung dari resistor tersebut akan menimbulkan beda potensial atau tegangan. Hukum yang didapat dari percobaan ini adalah: Hukum Ohm.
Mengenai pembahasan dari Hukum Ohm akan dibahas pada bab selanjutnya.
VR = IR

2. Kapasitor (C)
Sering juga disebut dengan kondensator atau kapasitansi. Mempunyai fungsi untuk membatasi arus DC yang mengalir pada kapasitor tersebut, dan dapat menyimpan energi dalam bentuk medan listrik.
Nilai suatu kapasitor tergantung dari nilai permitivitas bahan pembuat kapasitor, luas penampang dari kapsitor tersebut dan jarak antara dua keping penyusun dari kapasitor tersebut.
Secara matematis :
C = ε A/d
dimana : ε = permitivitas bahan
A = luas penampang bahan d = jarak dua keping
Satuan dari kapasitor : Farad (F)
Jika sebuah kapasitor dilewati oleh sebuah arus maka pada kedua ujung kapaistor tersebut akan muncul beda potensial atau tegangan, dimana secara matematis dinyatakan :
ic =C dvc/ dt

Penurunan rumus :
Q = CV
dq = Cdv dim ana :
i = dq/dt
dq = i.dt
sehingga :
i.dt = Cdv
i = C dv/dt
Dari karakteristik v - i, dapat diturunkan sifat penyimpanan energi pada kapasitor.
p = dw/dt
dw = p.dt
∫ dw = ∫ p.dt
w = ∫ p.dt = ∫ vi.dt = ∫ vC dv dt = ∫ Cvdv
Misalkan : pada saat t = 0 maka v = 0
pada saat t = t maka v = V
Jika kapasitor dipasang tegangan konstan/DC, maka arus sama dengan nol. Sehingga kapasitor bertindak sebagai rangkaian terbuka/ open circuit untuk tegangan DC.
3. Induktor/ Induktansi/ Lilitan/ Kumparan (L)
Seringkali disebut sebagai induktansi, lilitan, kumparan, atau belitan. Pada induktor mempunyai sifat dapat menyimpan energi dalam bentuk medan magnet.
Satuan dari induktor : Henry (H)

Arus yang mengalir pada induktor akan menghasilkan fluksi magnetik ( φ ) yang membentuk loop yang melingkupi kumparan. Jika ada N lilitan, maka total fluksi adalah :
λ = LI
L = λ/I
v = dλ/dt = L di/dt
Dari karakteristik v-i, dapat diturunkan sifat penyimpan energi pada induktor.
p = dw dt
dw = p.dt
∫ dw = ∫ p.dt
w = ∫ p.dt == ∫ vi.dt = ∫ L di i.dt = ∫ Li.di
Misalkan : pada saat t = 0 maka i = 0
pada saat t = t maka i = I
Jika induktor dipasang arus konstan/DC, maka tegangan sama dengan nol. Sehingga induktor bertindak sebagai rangkaian hubung singkat/ short circuit.
Hal-Hal Yang Perlu Diperhatikan :
1. Tegangan antara 2 titik, a dan b digambarkan dengan satu anak panah seperti pada gambar dibawah ini :

Vab menunjukkan besar potensial relatif titik a terhadap titik b.
2. Tegangan yang dipakai pada buku ini adalah tegangan drop/ jatuh dimana akan bernilai positif, bila kita berjalan dari potensial tinggi ke potensial rendah.
Contoh :

Voltage drop : Vac = Vab + Vbc = IR – V
3. Setiap arus yang melewati komponen pasif maka terminal dari komponen tersebut pertamakali dialiri arus akan menjadi potensial lebih tinggi dibandingkan potensial terminal lainnya.
4. Bedakan antara sumber tegangan dan pengukur tegangan/ Voltmeter.
Sumber tegangan (Rd = 0) Voltmeter
(Rd = ∞ )
Voltmeter dipasang paralel pada komponen yang akan diukur supaya tidak ada arus yang melalui Voltmeter.

5. Bedakan antara sumber arus dan pengukur arus/ Amperemeter
Sumber arus (Rd = ∞ ) Amperemeter (Rd = 0)
Amperemeter dipasang seri pada komponen yang akan diukur supaya tegangan pada Amperemeter samadengan nol.

Perlu diingat bahwa rangkaian paralel adalah pembagi arus dan rangkaian seri adalah pembagi tegangan. Pembahasan rangkain seri dan paralel akan dibahas pada bab selanjutnya.
6. Rangkaian Hubung Singkat (Short Circuit)
Sifat : Vab selalu samadengan 0, tidak tergantung pada arus I yang mengalir padanya.
Vab = 0
Rd = 0

7. Rangkaian Terbuka (Open Circuit)
Sifat : arus selalu samadengan 0, tidak tergantung pada tegangan a-b. I = 0
Rd = ∞

Contoh komponen pasif adalah:
a. Resistor: adalah komponen elektronika yang berfungsi membatasi atau menghambat arus listrik. Karena tidak dapat menguatkan sinyal maka resistor termasuk komponen pasif.
b. Kapasitor: adalah merupakan komponen elektronika yang berfungsi untuk menyimpan medan listrik, dapat juga berfungsi untuk memblokir arus DC dan meneruskan arus AC. Karena tidak dapat menguatkan, menyearahkan dan mengubah suatu energi ke bentuk lainnya, maka kapasitor termasuk komponen pasif.
c. Induktor: adalah termasuk komponen pasif karena tidak dapat menguatkan dan menyearahkan sinyal maupun mengubah suatu energi ke bentuk lainnya. Bagi arus DC induktor bersifat mengalirkannya tetapi bagi arus AC induktor bersifat menghambat.
b. Kapasitor: adalah merupakan komponen elektronika yang berfungsi untuk menyimpan medan listrik, dapat juga berfungsi untuk memblokir arus DC dan meneruskan arus AC. Karena tidak dapat menguatkan, menyearahkan dan mengubah suatu energi ke bentuk lainnya, maka kapasitor termasuk komponen pasif.
c. Induktor: adalah termasuk komponen pasif karena tidak dapat menguatkan dan menyearahkan sinyal maupun mengubah suatu energi ke bentuk lainnya. Bagi arus DC induktor bersifat mengalirkannya tetapi bagi arus AC induktor bersifat menghambat.






Komentar
Posting Komentar